19.1 Введение

Проектируемая разведочно-эксплуатационная скважина предназначена для технического водоснабжения при строительстве эксплуатационных скважин №№2,3,4 Георгиевского нефтяного месторождения.

Потребность в воде составляет 100 м³/сут. Скважина после бурения будет оборудована электропогружным насосом ЭЦВ 4-6,5-150. В соответствии с имеющимися геолого-гидрогеологическими данными, глубина скважины на проектируемом участке должна составлять 170 м, далее глубины приведены согласно геолого-гидрогеологическому заключению о возможности технического водоснабжения производственных объектов ООО «ЮКОЛА-нефть», расположенных в пределах Георгиевского месторождения Пестравского района Самарской области, без учета превышения стола ротора бурового станка.

Конструкция скважины определяется исходя из заявленной потребности, понижения уровня, мощности водоносного горизонта и гидрогеологических условий участка работ.

С базой буровой организации участок работ связан асфальтовыми и грунтовыми дорогами. Расстояние от г. Саратова до проектируемой скважины составляет 315,4 км.

Водоснабжение может быть организовано за счет подземных вод пермского возраста, интервал залегания – 90-170 м.

Исходя из геологического строения, гидрогеологических и геоэкологических условий района работ, проектом предусматривается конструкция скважины и водоподъемного оборудования, позволяющие получить заявленную потребность в воде.

Сброс откачиваемой воды при проведении строительной откачки планируется производить в специальный гидроизоляционный буровой амбар.

Бурение и оборудование водозаборной эксплуатационной скважины должно соответствовать СП 2.1.5.1059-01 «Гигиенические требования к охране подземных вод от загрязнения».

Во время проведения буровых работ проживание и питание рабочих предполагается в вагон-домике «Тайга». Для хозяйственно питьевых целей планируется использовать бутилированную воду. Сбор хозяйственно-бытовых стоков будет производиться в водонепроницаемый выгреб. Вывоз хозяйственно-бытовых стоков планируется производить ассенизационным транспортом на сливную станцию по договору с лицензированным предприятием.

Затраты времени на проектируемые работы определены с использованием Сборников сметных норм (ССН).

Участок работ расположен в пределах Георгиевского месторождения и в административном отношении расположен в Пестравском районе Самарской области, в 10,2 км по направлению юго-восток от н.п. Березовая Роща, в 11.2 км по направлению на юго-запад от н.п. Марьевка и в 5.4 км по направлению на

		•		
Ли	Изм.	№ докум.	Подп.	Дат

10-2020/1 ПД.ИОС7.ТР

Лист

207

Подп. и дата

Взам. инв. №

Инв. № дубл.

Подп. и дата

нв. № подп

Скважина является разведочно-эксплуатационной, в связи с чем, геологический разрез, глубина, конструкция скважины, дебит и положение уровня воды корректируются в процессе бурения.

19.2 Геологическое строение

Геологическая характеристика разреза эксплуатационных скважин №2,3,4 Георгиевского нефтяного месторождения приведена в главе 4 данного проекта. Практическое значение для целей технического водоснабжения бурения глубоких скважин на участке имеют подземные воды пермских отложений, в связи с чем, характеристика геологического строения и гидрогеологических условий приводится, начиная с перьми.

Палеозойская эратема (PZ)

Представлена девонской, каменноугольной и пермской системами.

Пермская система (Р)

Система представлена двумя гидрогеологическими связанными сакмарским и казанским ярусами.

Сложена известняками, доломитами серыми, в различной степени трещиноватыми мощность отложений 50-88 м.

Мезозойская эратема (MZ)

На участке работ отсутствует.

Подп.

Кайнозойская эратема (KZ)

Представлена неогеновой и четвертичной системами.

Неогеновая система (N)

Представлена плиоценом в составе акчагыльского (N_2ak) региояруса. Акчагыльские отложения залегают в интервале глубин 10-90 м. Сложены песками серыми, кварцевыми, мелкозернистыми с прослоями глин коричневых, серых, плотных.

Четвертичная система (Q)

Отложения системы представлены эоплейстоценом.

Сложены песками желтовато-коричневыми, мелкозернистыми, кварцевоглауконитовыми, мощностью 5 м и глинами желтовато-коричневыми, плотными, мошностью 4 м.

Ли	Изм.	№ докум.

Подп. и дата

UHB.

Взам.

№ дубл.

u dama

Подп.

10-2020/1 ПД.ИОС7.ТР

- В пределах исследуемой территории выделяются следующие гидрогеологические подразделения:
 - эоплестоценовый водоносный горизонт (Q_E ap);
 - акчагыльский водоносный горизонт (N2a);
 - пермский водоносный горизонт (Р₁₋₂);

Эоплестоценовый водоносный горизонт

Водоносный эоплейстоценовый горизонт является первым от поверхности и приурочен к «подсыртовым» пескам, залегающим в основании «сыртовой» глинистой толщи. Горизонт подстилается глинами акчагыльского возраста. Горизонт безнапорный, субнапорный. Уровни устанавливаются на глубине около 10 м. Водообильность водоносного горизонта небольшая, изменяется в пределах от 0.05 до 0.1 л/с при понижениях 2.5-5 м. Питание осуществляется за счет атмосферных осадков и разгрузки напорных вод акчагыла. Разгрузка происходит в речные долины.

Воды по химическому составу пестрые с минерализацией от 1.0-3.0 до 5-10 г/л. По природным условиям классифицируются, как защищенные от поверхностного загрязнения. Горизонт маломощный, водообильность небольшая, поэтому практического значения не имеет.

Акчагыльский водоносный горизонт

Акчагыльский водоносный комплекс приурочен к верхнеплиоценовым отложениям акчагыльского яруса. Комплекс развит повсеместно и приурочен к прослоям одноименных песков. Водовмещающие породы представлены, в основном, песками разнозернистыми. Водоносный горизонт обладает напором высотой 25-33 м, уровень устанавливается на глубинах 35-40 м. По качеству подземные воды пресные, солоноватые с минерализацией от 0.5-1 до 3.6 г/л. По химическому составу воды, в основном, гидрокарбонатные, с жесткостью до 6°Ж и более. Дебиты эксплуатационных скважин, пробуренных в ближайших населенных пунктах, составляют 1-2 л/с при понижении до 5 м. Питание комплекса осуществляется за счет инфильтрации атмосферных осадков в местах выхода водовмещающих пород на поверхность и разгрузки нижезалегающих водоносных комплексов. Разгрузка происходит путем подземного стока и перетока на отдельных участках в четвертичный водоносный горизонт.

Акчагыльский водоносный комплекс защищен от поверхностного загрязнения и используется для водоснабжения во многих населенных пунктах Самарского и Саратовского Заволжья и может быть рекомендован для организации технического водоснабжения процесса строительства эксплуатационных скважин №№2,3,4 Георгиевского нефтяного месторождения.

Ли Изм. № докум. Подп. Дат

Подп. и дата

инв. №

Взам.

№ дубл.

Инв.

u dama

№ подп

10-2020/1 ПД.ИОС7.ТР

Водообильность комплекса достаточно высокая. Значительная трещиноватость и кавернозность известняков определяет хорошие коллекторские свойства. Дебиты скважин находятся в пределах 2.0-3.3 л/с при понижении 8-20 м и могут достигать 9.3 л/с при понижении 7 м. Удельные дебиты изменяются от 0.3 л/с на м до 5.5 л/с на м.

По своему химическому составу воды водоносного комплекса относятся к хлоридно-гидрокарбонатным натриево-кальциевым, пресным, с минерализацией 0.4-0.8~г/л, общей жесткостью $7.8\text{-}9.0^\circ\text{Ж}$, либо смешанного анионного и катионного состава с минерализацией 1.1-1.5~г/л, общей жесткостью около 13°Ж .

Питание комплекса осуществляется путем перетока вод из вышезалегающих водоносных и напорных нижезалегающих горизонтов и комплексов, на участках выхода на поверхность атмосферными осадками и паводковыми водами, разгрузка осуществляется за счет подземного стока в сопредельный акчагыльский водоносный комплекс.

Подземные вод пермского водоносного комплекса являются одним из основных источников водоснабжения в Пестравском районе Самарской области. За счет них может быть организовано техническое водоснабжение производственных объектов, расположенных в пределах Георгиевского нефтяного месторождения, с объемом потребления 100 м³/сут.

19.4 Выводы и предложения

Организация технического водоснабжения эксплуатационных скважин №№2,3,4 Георгиевского нефтяного месторождения, расположенных в Пестравском районе Самарской области, возможна за счет подземных вод пермского водоносного горизонта.

Для получения заявленного количества воды 100 м³/сут рекомендуется строительство разведочно-эксплуатационной скважины глубиной 170 м.

Чтобы оценить возможность использования подземных вод того или иного водоносного комплекса в необходимом количестве рекомендуется работы проводить в два этапа.

На первом этапе пробурить скважину на глубину 170 м. Диаметр не должен превышать 132 мм. Для уточнения геологического разреза и выделения интервалов водонасыщенных коллекторов необходимо проведение геофизических исследований в разведочном стволе скважины. По результатам геофизических исследований определяется оптимальная конструкция

Инв. № подп

10-202 № докум. Подп. Дат

10-2020/1 ПД.ИОС7.ТР

При этом, если обнаруженный в процессе бурения водоносный пласт акчагыльских отложений будет достаточным по мощности и водообильности, то бурение на глубину 170 м, на пермский водоносный комплекс не потребуется.

На втором этапе в стволе скважины производится ее расширение до необходимого диаметра не менее $245\,$ мм на глубину, определенную по результатам ГИС.

Скважина должна быть оборудована каркасно-сетчатым фильтром длиной не менее 10 м. Верхняя неэксплуатируемая часть гидрогеологического разреза должна быть надежно изолирована отдельной колонной труб с цементацией затрубного пространства.

Для исключения возможного загрязнения подземных вод целевого горизонта с поверхности скважина должна быть оборудована герметизированным оголовком. Для ведения мониторинга скважина оборудуется водомерным счетчиком, краном для отбора проб воды, трубкой для замеров уровней воды. После окончания бурения и оборудования скважины необходимо провести опытную откачку воды с максимальным расходом до ее полного осветления и достижения стабильного динамического уровня, продолжительностью не менее 5 суток. В конце откачки должны быть отобраны пробы на химические исследования.

Для предотвращения загрязнений подземных вод создается зона санитарной охраны (ЗСО) вокруг водозаборных скважин (СанПиН 2.1.4.1110-02 «Зоны санитарной охраны источников водоснабжения и водопроводов питьевого назначения» и СП 2.1.5.1059-01 «Гигиенические требования к охране подземных вод от загрязнения», СП 31.13330.2012 «Водоснабжение. Наружные сети и сооружения»). При определении размеров первого пояса ЗСО учитывается естественная защищенность подземных вод от поверхностного загрязнения. Подземные воды водоносного пермского горизонта на участке относятся к защищенным водам, так как перекрыты толщей водоупорных пород. Размер первого пояса ЗСО водозаборной скважины, эксплуатирующей защищенные подземные воды, составляет 30 м.

јубл. | Взам. инв. № | Подп. и дата

Инв. № дубл.

№ подп

Подп.

Ли Изм. № докум. Подп. Дат

10-2020/1 ПД.ИОС7.ТР

19.5 Специальная часть

19.5.1 Проектная характеристика скважины

Конструкция скважины определяется геолого-гидрогеологическими условиями и заявленной потребностью в воде.

Таблица 19.1

Подп. и дата

инв. №

Взам.

№ дубл.

No	Показатели	Един.	Количество
№		изм.	
1	Количество скважин	шт.	1
2	Абс. отметка устья	M	126
3	Глубина скважины	M	170
4	Установившийся уровень воды	M	70
5	Динамический уровень	M	80
6	Понижение уровня	M	10
7	Производительность скважины	м ³ /сут	100
8	Вид бурения		Роторный
9	Глубина загрузки насоса	M	82
10	Марка насоса		ЭЦВ 4-6,5-150
11	Станция управления		СУЗ Лоцман-25
12	Водоносный горизонт		пермский

19.5.2 Конструкция скважины

Учитывая принятый способ бурения, технологию и методику ведения работ, глубину залегания принятого к эксплуатации водоносного горизонта, заявленную потребность в воде, тип водоподъемного оборудования и опыт эксплуатации скважин на соседних площадях, конструкция эксплуатационной скважины принимается следующей:

- 1. техническая колонна (кондуктор) \emptyset -219 мм от + 0.5 до 90 м;
- 2. фильтрационная колонна Ø168 мм в инт. 85-170 м;
- 2.1 фильтр сетчатый \varnothing 159 мм 150-165 м;
- 2.2 отстойник Ø 159 мм 165-170 м.

Глубина скважины и фильтрационной колонны корректируется по результатам бурения и каротажным исследованиям.

Ли	Изм.	№ докум.	Подп.	Дат

10-2020/1 ПД.ИОС7.ТР

Заявленная потребность в воде составляет 100 м³/сут. Исходя из этой потребности, произведём расчёт понижения уровня в скважине на конец срока эксплуатации водозабора (84.43 суток - время бурения, крепления и испытания нефтяной скважины).

Расчёт понижения производится по общепринятой формуле (Н.Н. Биндеман, Л.С. Язвин, «Оценка эксплуатационных запасов подземных вод (Методическое руководство)», М. Недра, 1970).

$$S_0 = rac{0.366 \mathrm{x} Q \mathrm{x} \left[l g rac{Rn}{r_0} + 0.217 \mathrm{x} arepsilon
ight]}{km},$$
 где

 S_0 — понижение уровня в эксплуатационной скважине, м;

Q —дебит скважины, M^3/cvT ;

km — водопроводимость пород, m^2/cyT ;

R_п — приведенный радиус влияния, м;

r₀ — радиус скважины, м;

величина фильтрации сопротивления

Величина приведенного радиуса влияния рассчитывается по формуле:

$$R\Pi = 1.5\sqrt{at}$$
, где:

а — коэффициент пьезопроводности, м²/сут;

t — время эксплуатации, 84.43 сут.

Параметры фильтрации приняты ПО данным отчета «Оценка эксплуатационных запасов подземных вод для технологического обеспечения объектов промышленности в пределах Богородского Духовницком районе Саратовской области» Мудрова А.В., Самойлов Д.В., 2011 г. и составляют:

- коэффициент водопроводимости пород 133 м²/сут;
- коэффициент пьезопроводности пород —1.3 х 10^5 м 2 /сут;
- приведенный радиус влияния —

$$R_{\Pi}=1.5\sqrt{at}=1.5\sqrt{1.3*10^5*84.43}=4969.484 \text{ M}.$$

Фильтрационное сопротивление ε определяется в зависимости

соотношения $\frac{l}{m}$ и $\frac{m}{r_0}$ где

Подп. и дата

Взам.

№ дубл.

l — длина рабочей части фильтра 15 м;

$$m$$
 — мощность водоносного горизонта 75 м;
$$\frac{l}{m} = \frac{15}{75} = 0.2 \qquad \qquad \frac{m}{r_0} = \frac{75}{0.095} = 789.47$$
 $\epsilon = 24.9$

(таблица 13 в методическом пособии Н.Н. Биндеман, Л.С. Язвин, «Оценка эксплуатационных запасов подземных вод, М. Недра, 1970).

_				
Ли	Изм.	№ докум.	Подп.	Дат

10-2020/1 ПД.ИОС7.ТР

$$S_0 = \frac{0.366*100*(lg\frac{4969.484}{0.095} + 0.217*24.9)}{133} = 3.78 \text{ M}$$

Таким образом, понижение уровня в эксплуатационной скважине на конец срока эксплуатации — 84.43 суток (время бурения, крепления и испытания нефтяной скважины) составит 3.78 м и не превысит допустимого, равного 20 м (напор над кровлей горизонта). Следовательно, работа скважины будет обеспечена в течение 84.43 суток.

19.5.4 Производство буровых работ

<u>Бурение разведочно-эксплуатационной водозаборной скважины</u> глубиной 170 м будет проводиться вращательно-роторным способом с прямой промывкой, технической водой или облегченным глинистым раствором без химических реагентов, буровой установкой 1БА-15В.

В начале в скважине бурение проводится \emptyset 132 мм до проектной глубины 170 м для последующего проведения каротажных исследований. В качестве промывочной жидкости используется глинистый раствор. Вскрытие и бурение по выбранному горизонту ведется технической водой. После проведения каротажных исследований скважина разбуривается \emptyset 295 мм от 0 до 90 м под техническую колонну (кондуктор) \emptyset 219 мм (глубину спуска башмака кондуктора корректировать согласно результатам каротажных работ, располагать в устойчивом пропластке). После полного затрубного цементажа кондуктора в интервале от 0 до 90 м, ОЗЦ и разбуривания цементного стакана, скважина расширяется долотом \emptyset 190 мм до глубины 170 м:

- под фильтровую колонну Ø 168 мм, которая устанавливается «впотай» в интервале 85-170. Фильтр сетчатый Ø 159 мм рабочая часть фильтра в интервале 150-165 м, отстойник в интервале 165-170 м. Производится песчано-гравийная засыпка фильтровой колонны в интервале 85-170 м;
 - остается не обсаженной, эксплуатируется с открытым забоем.

Ли	Изм.	№ докум.	Под

Подп. и дата

инв. №

Взам.

№ дубл.

Подп.

	Вид							Зат	раты вре	мени. ст	/см.
								норма			
N_0N_0		К-во	Группа	Диам.	Кат.	Объем	Норматив.	на 1	на весь	попр.	
П.П.	работ	СКВ.	скв.	бур.	пород	бур.	докум.	П.М.	объем	коэф.	итого
1	2	3	4	5	6	7	8	9	10	11	12
1	Бурение скважины	1	II								
	Ermanna (4122 and p				II	1		0.02	0.02		0.02
	Бурение Ø132 мм в инт. 0–170м			132	III	94	CCH-V.	0.03	2.82		2.82
	инт. 0—1 /0м			132	VI	75	т. 11	0.11	8.25		8.25
	Итого Ø-132мм					170					11.09
	Расширение с Ø132 мм до Ø295 мм в				II	1	CCH-V.	0.03	0.03		0.03
	инт.0-90м			295	III	89	т. 11	0.05	4.45		4.45
	Итого Ø295мм					90					4.48
	Расширение с Ø132 мм до Ø190 мм в инт. 90-170м			190	VI	80	ССН-V. т. 11	0.13	10.4		10.4
	Итого Ø190мм					80					10.4
	Всего на бурение. ст/см.									25.97	

Сопутствующие работы

■ Промывка скважины перед геофизическими исследованиями. Затраты времени на проведение промывки перед каротажем в скважине Ø132 мм с учетом глубины промывки (ССН-V, т. 64) приведены в таблице 19.3.

Таблица 19.3 - Затраты времени на проведение промывок перед каротажем

<u>№№</u> П.П.	Группа скв. по глубине, м	Глубина промывки, м	Кол-во промывок	Норма времени (в ст/см на 1 промывку)	Объем работ (в ст/см)
1	II, 0-200	170	1	0.24	0.24
И	Ітого: 0.24 ст/см.				

- Проработка ствола скважины перед спуском кондуктора. Ствол скважины должен прорабатываться перед спуском кондуктора. Количество проработок скважины диаметром свыше 132 мм составит 1. Затраты времени составят 0.42 ст/см (ССН-V, т. 65).
- Крепление скважин обсадными трубами. С целью крепления стенок скважины и изоляции опробуемого горизонта от вышезалегающих водоносных горизонтов, проектом предусматривается установка технической колонны в скважине Ø219 мм на глубину 90 м.
- Затраты времени на установку обсадных (технических) колонн с ниппельными и муфтовыми соединениями (ССН-V, т. 72) приведены в таблице 19.4.

ı	Ли	Изм.	№ докум.	Подп.	Дат

Подп. и дата

инв. №

Взам.

№ дубл.

№№ п.п.	Средний диаметр, мм	Группа скв. по среднему диаметру, мм	Основание	Кол-во, м (на 100м)	Норма времени в ст/см на 100 м труб)	Объем работ (в ст/см)
1	0.219	2	(CCH-V, т. 72)	0.9	0.87	0.78
	Итого:					0.78

■ Цементаж затрубья скважины. Проектом предусматривается цементаж обсадной (технической) колонны Ø219 мм с целью изоляции опробуемого водоносного горизонта. Цементаж будет производиться цементировочным агрегатом, диаметр скважины свыше 132 мм. После цементажа предусматривается ОЗЦ в течение 24 часов (3.61 ст/см). Затраты времени на цементирование колонны обсадных труб с учетом глубины постановочного моста приводятся в таблице 5.

Таблица 19.5 - Затраты времени на цементирование колонн обсадных труб

№№ п.п.	Глубина	Кол-во	Основание	Норма времени в	Объем					
	спуска	цемента-		ст/см на 1	работ (в					
	колонны	жей		цементирование)	ст/см)					
1	1 90 м 1		(CCH-V, т. 67)	0.28	0.28					
Итого: Ø о	Итого: Ø свыше 132мм – 0.28 ст/см									

- Разбуривание цементного стакана. При цементировании кондуктора, внутри труб из остатков непродавленного цемента будет образовываться цементный стакан. Высота его в настоящем проекте предусматривается равной 10 м. Число стаканов в соответствии с количеством скважин, на которые производится расчёт, составит 1.
- Разбуривание цементного стакана полностью аналогично процессу бескернового бурения пород VI категории по буримости. Объем разбуривания цементного стакана составит 10 п.м. Затраты времени на разбуривание цементных стаканов приводятся в таблице 19.6 (ССН-V, т. 11. гр. 6).

Таблица 19.6 - Затраты времени на разбуривание цементных стаканов

Подп. и дата

инв. №

Взам.

№ дубл.

u dama

Подп.

№ подп

<u>№№</u> п.п.	Диаметр скважины	Интервал глубин скважин	Количество метров	Нормативный документ	Норма на1 п.м.	Затраты труда					
1	190	0-200	10	(ССН-V, т. 11)	0.13	1.3					
Итого:	Итого: Ø190мм – 1.3 ст /см										

Потребность сухого цемента рассчитываем по формуле (Справочник по бурению и оборудованию скважин на воду Дубровского В. В., Москва, 1972 г.):

					10-2020/1 ПД.ИОС7.Т
Ли	Изм.	№ докум.	Подп.	Дат	

Д_{скв} — диаметр бурения скважины, м;

d _н— наружный диаметр обсадных колонн, м;

L — высота цементажа, м;

К – коэффициент кавернозности равный 1.33;

d_в — внутренний диаметр колонны, м;

h — высота цементного стакана, 10 м.

$$V_{\text{ii,p}} = 0.785 * 1.2 * (0.295^2 - 0.219^2) * 90 + 0.201^2 * 10^* = 3.72 \text{ m}^3$$

Итого: 3.72м³

Тодп. и дата

Взам.

№ дубл.

Количество сухого цемента, необходимого для приготовления данного объёма раствора, определяем по формуле:

$$q = V imes rac{\gamma_u imes \gamma_s}{\gamma_s + m imes \gamma_u} imes k$$
 , где

k — коэффициент потерь цемента при затаривании, 1.1;

V — объем цементного раствора, M^3 ;

 $\gamma_{\rm II}$ — удельный вес цемента, 1.95т/м³;

 $\gamma_{\rm B}$ — удельный вес воды, 1.0 т/м³;

т — водоцементное число, 0.40.

$$q = 3.72x \frac{1.95x1}{1 + 0.40x1.95} x1.1 = 4.48x$$

Всего на цементаж затрубного пространства будет израсходовано 4.48 т сухого цемента.

Установка фильтра

В скважине предусматривается установка фильтра в «потай». Затраты времени на установку фильтра приводятся в таблице 19.7.

Таблица 19.7 - Затраты времени на установку фильтра

<u>№№</u> п.п.	Глубина установки фильтровой колонны, м	Кол-во установок фильтра	Норматив. документ	Норма времени (в ст/см на 1 фильтр)	Объем работ (в ст/см)		
1	85-170	1	ССН-V, т.78, гр.9	1,7	1.7		
Итого	Итого: 1.7 ст/см						

Монтаж-демонтаж буровых установок.

В соответствии с проектным количеством скважин, предусматривается проведение 1 монтажно-демонтажной работы для буровой установки 1БА-15В.

Ли	Изм.	№ докум.	Подп.	Дат

№ п/п	Вид работ	Един. измер.	Группа скважин	Коэффициент к заработной плате	Объем работ	Нормативн. документ	врем	раты мени, у/см Всего	
1	Монтаж- демонтаж	м/д	IV	-	1	CCH-V T.102	3.69	3.69	

Количество труб

Для оборудования проектируемых скважин на участок работ необходимо завезти следующее количество труб (с учетом патрубка по 0.5 м):

Ø219 мм - 90 м

 $\emptyset 168 \text{ mm} - 85 \text{ m}$

Подп. и дата

инв. №

Взам.

№ дубл.

Подп. и дата

 \emptyset 73 мм – 87 м (водоподъемные)

Ø20 мм - 87 м (пьезометр).

Трубы остаются в скважинах.

Расчет потребности песчано-гравийной смеси

Проектом предусматривается обсыпка фильтровой колонны песчаногравийной смесью.

Таблица 19.9 - Расчет потребности песчано-гравийной смеси

NºNº	Вид работ	Интервал обсыпки, м	Объем работ, п.м.	Диам. скв., мм	Диам. фильтр. кол., мм	Поправ. коэфф.	Объем ПГС, м ³
1	Скважина	85-170	85	190	168	1.3	0.68

Расчет проводится по формуле:

 $V = 0.785 \; (\Pi^2_{\text{скв}} - \Pi^2) \times Lk \; \Gamma \pi e,$

k — коэффициент, учитывающий увеличение объёма ствола скважины за счет образования каверны прифильтровой части фильтра, 1.3;

Дскв — диаметр бурения скважины, м;

Д — наружный диаметр колонны, м;

L — длина засыпки, м;

 $V = 0.785 \times (0.190^2 - 0.168^2) \times 85 \times 1.3 = 0.68 \text{ m}^3$

Всего необходимо ПГС в количестве 0.68 м³.

Расчет глинистого раствора

Исходя из конструкции скважины, расход промывочного раствора составит: Для бурения скважины:

$$Vp = 3.14x \left(\frac{0.132^2}{2}\right) x170 = 4.65 \text{ m}^3;$$

Для расширения скважины:

L			' 1	_			
							Лист
						10-2020/1 ПД.ИОС7.ТР	210
	Ли	Изм.	№ докум.	Подп.	Дат		218

Для расширения скважины:

$$Vp = 3.14x \left(\frac{0.190^2}{2}\right) x80 = 4.53 \text{ m}^3;$$

Всего на бурение и расширение скважины потребуется глинистого раствора:

$$4.65+12.3+4.53 = 21.48 \text{ m}^3$$

Расход глинопорошка (бентонитовой глины) для приготовления такого количества раствора (при норме 0.2 т глины на 1 m^3) составит: 4.3 т.

19.6 Геофизические исследования в скважине

Для уточнения геологического разреза, интервалов установок обсадной колонны, предусматривается стандартный комплекс каротажных исследований методами ПС, КС, ГК.

Для геофизических исследований будет использоваться каротажная станция СКС-1-01 с применением аппаратуры РКСМ и "Кура" для гамма - каротажа. Масштаб глубин 1:500, масштаб физических параметров КС - 5 омм/см, ПС - 5 омм/см.

Геофизическими исследованиями в скважине решаются следующие задачи:

- литологическое расчленение разреза;
 - выделение водонасыщенных коллекторов и водоупоров;

Таблица 19.10 - Расчет затрат времени на геофизические исследования в скважинах (ССН-III, т. 7)

Группа скважин	Кол-во единиц	Норма на единицу	Затраты времени	
II 0-200	1.3	(2.1-0.42)+0.21	2.46	
Итого:		2.46		
С учетом переездов:		4.96		

Таблица 19.11 - Технико-экономические показатели

N_0N_0	Показатели	Проектные данные
1	Назначение скважин	Развед. эксплуатац.
2	Вид и тип используемых каротажных установок	CKC-1-01
3	От базы экспедиции до участка работ:	315.4 км
4	Группа дорог	1
4	Расстояние	310 км
5	Группа дорог	3
3	Расстояние	5.4 км

Ли	Изм.	№ докум.	Подп.	Дат

10-2020/1 ПД.ИОС7.ТР

Лист 219

Подп. и дата Инв. № дубп. Взам. инв. №

Подп. и дата

Группа	Кол-во	По	На весь	Норма	
скважин	скважин	категории	объем,	времени,	Затраты времени
СКВажин	(выездов)	дорог, км	0,01км	CCH-III, т. 6	
Каротаж					
II 0-200	1	310 x 2	6.2	0.332	2.06
11 0-200	1	5.4 x 2	1.08	0.571	0.62
тИ	гого:				2.68 отр/см

19.7 Опытные гидрогеологические работы

После окончания бурения скважины в ней предусматриваются следующие виды опытных работ:

- а) деглинизация и разработка скважины;
- б) строительная откачка.

Деглинизация и разработка скважины

Проведение ЭТОГО вида работ предусматривается скважине непосредственно после завершения бурения в интервале открытого ствола. Целью работ является очистка стенок скважины в открытом стволе от глинистой корки и формирование естественного фильтра. Методика работ чередовании промывки скважины чистой водой грязевым насосом и откачки воды с помощью эрлифта до полного удаления из скважины глинистого раствора, механических частиц и шлама, достижения проектной производительности скважины. На этот вид работ проектируется 1.5 бр/см. (11 часов).

Строительная откачка

Строительная откачка проводится с целью подтверждения устойчивого проектного расхода воды, оценки качества отбираемой воды. Продолжительность строительной откачки из скважины должна быть не менее 5 суток (16.3 бр/см). Строительная откачка будет проводиться, электропогружным насосом типа ЭЦВ-4-6,5-150 при глубине установки 82 м, на водоподъемных трубах диаметром 73 мм. Строительная откачка проводится на одно понижение с максимальным дебитом. Дебит измеряется объемным методом емкостью 0,2 м³. При проведении строительной откачки из скважины будет откачано 500 м³ воды. Вода при откачке будет сбрасываться в сборный амбар нефтяной скважины.

Затраты времени на подготовку и ликвидацию строительной откачки насосом ЭЦВ-4-6,5-150 составят (ССН-1.ч.4, т.5):

II.0-200. д-190 мм $- 1.0 \times 0.52 = 0.56$ бр/см

Ли	Изм.	№ докум.	Подп.	Дат

Подп. и дата

инв. №

Взам.

№ дубл.